Search results for "relativistic processes"

showing 3 items of 3 documents

Three-dimensional core-collapse supernovae with complex magnetic structures: I. Explosion dynamics

2021

Magnetic fields can play a major role in the dynamics of outstanding explosions associated to violent events such as GRBs and hypernovae, since they provide a natural mechanism to harness the rotational energy of the central proto-neutron star and power relativistic jets through the stellar progenitor. As the structure of such fields is quite uncertain, most numerical models of MHD-driven core-collapse supernovae consider an aligned dipole as initial magnetic field, while the field's morphology can actually be much more complex. We present three-dimensional simulations of core-collapse supernovae with more realistic magnetic structures, such as quadrupolar fields and, for the first time, an…

transients: supernovaeField (physics)MHDAstrophysics::High Energy Astrophysical Phenomenagamma-ray burst: generalFOS: Physical sciencesAstrophysics01 natural sciencesstars: magnetarsAstrophysical jet0103 physical sciencesAstrophysics::Solar and Stellar Astrophysics010303 astronomy & astrophysicsSolar and Stellar Astrophysics (astro-ph.SR)relativistic processesPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)010308 nuclear & particles physicsAstronomy and AstrophysicsRotational energyMagnetic fieldDipoleAstrophysics - Solar and Stellar AstrophysicsinstabilitiesSpace and Planetary ScienceMagnetohydrodynamicsAstrophysics - High Energy Astrophysical Phenomena[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]HypernovaDynamo
researchProduct

Dissipative Processes and Their Role in the Evolution of Radio Galaxies

2019

Particle acceleration in relativistic jets to very high energies occurs at the expense of the dissipation of magnetic or kinetic energy. Therefore, understanding the processes that can trigger this dissipation is key to the characterization of the energy budgets and particle acceleration mechanisms at action in active galaxies. Instabilities and entrainment are two obvious candidates to trigger dissipation. On the one hand, supersonic, relativistic flows threaded by helical fields, as expected from the standard formation models of jets in supermassive black-holes, are unstable to a series of magnetohydrodynamical instabilities, such as the Kelvin-Helmholtz, current-driven, or possibly the p…

Active galactic nucleuslcsh:AstronomyRadio galaxyAstrophysics::High Energy Astrophysical Phenomenagalaxies: activeFOS: Physical sciencesKinetic energy01 natural scienceslcsh:QB1-991X-rays: binariesAstrophysical jet0103 physical sciencesrelativistic processes ISM: jets and outflows010303 astronomy & astrophysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)PhysicsJet (fluid)010308 nuclear & particles physicsAstronomy and AstrophysicsMechanicsgalaxies: jetsradiation mechanisms: non-thermalDissipationAstrophysics - Astrophysics of GalaxiesParticle accelerationAstrophysics of Galaxies (astro-ph.GA)MagnetohydrodynamicsAstrophysics - High Energy Astrophysical PhenomenamagnetohydrodynamicsGalaxies
researchProduct

The impact of non-dipolar magnetic fields in core-collapse supernovae

2019

The magnetic field is believed to play an important role in at least some core-collapse supernovae if its magnitude reaches $10^{15}\,\rm{G}$, which is a typical value for a magnetar. In the presence of fast rotation, such a strong magnetic field can drive powerful jet-like explosions if it has the large-scale coherence of a dipole. The topology of the magnetic field is, however, probably much more complex with strong multipolar and small-scale components and the consequences for the explosion are so far unclear. We investigate the effects of the magnetic field topology on the dynamics of core-collapse supernovae and the properties of forming proto-neutron star (PNS) by comparing pre-collap…

transients: supernovaeMHDAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesCompact starMagnetar01 natural sciencesstars: magnetars0103 physical sciences010303 astronomy & astrophysicsrelativistic processesPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)Toroid010308 nuclear & particles physicsgamma-ray burststurbulenceAstronomy and AstrophysicsRotational energyComputational physicsMagnetic fieldSupernovaDipoleSpace and Planetary ScienceMagnetohydrodynamicsAstrophysics - High Energy Astrophysical Phenomena[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]Monthly Notices of the Royal Astronomical Society
researchProduct